G	uesti	on	Answer	Marks	Guidance
1	(a)	(i)	$ \begin{array}{c} AI^{3+}\checkmark\\ SO_4^{2-}\checkmark \end{array} $	2	
		(ii)	$AI_2O_3(s) + 3H_2SO_4(aq) \rightarrow AI_2(SO_4)_3(aq) + 3H_2O(I)$ Correct species AND correctly balanced \checkmark state symbols on correct species \checkmark	2	ALLOW multiples
		(iii)	(The number of) water(s) of crystallisation \checkmark	1	IGNORE hydrated OR hydrous OR 'contains water'
		(iv)	First check the answer on the answer line. If answer = 16, award 3 marks Correctly calculates amount of $AI_2(SO_4)_3$: $6.846 / 342.3 = 0.02(00) \text{ mol } \checkmark$ Correctly calculates amount of H_2O : $5.760 / 18.0 = 0.32(0) \text{ mol } \checkmark$ Correctly calculates whole number ratio of mol of H_2O : $AI_2(SO_4)_3$ to give $\mathbf{x} = 16 \checkmark$	3	If there is an alternative answer, check to see if there is any ECF credit possible using working below ALLOW as ECF from 12.606/342.3 = 0.0368(273) AND 0.32/0.0368(273) To give $\mathbf{x} = 9$ for two marks ALLOW calculator value or rounding to 2 significant figures or more BUT IGNORE 'trailing' zeroes, eg 0.200 allowed as 0.2. ALLOW ECF for calculation of correctly rounded whole number value of H ₂ O from incorrect mol of H ₂ O and / or incorrect mol of Al ₂ (SO ₄) ₃ BUT \mathbf{x} must be a whole number ALLOW alternative method Mol of Al ₂ (SO ₄) ₃ : 6.846 / 342.3 = 0.02(00) mol (first mark) Molar mass of Al ₂ (SO ₄) ₃ · \mathbf{x} H ₂ O: 12.606 / 0.02(00) = 630.3 g mol ⁻¹ (second mark) Mass of water per mol = 630.3 – 342.3 = 288 AND 288/18 to give $\mathbf{x} = 16$ (third mark)

G	uesti	on	Answer	Marks	Guidance
G 1	(b)	-	Answer $Cl_2 + H_2O \rightarrow HCl + HClO \checkmark$ H ⁺ ions are released OR HCl is acidic OR HClO is acidic \checkmark	Marks 2	Guidance ALLOW HOC/ ALLOW equilibrium sign IGNORE state symbols ALLOW formulae OR names If correct equation is seen: ALLOW 'product is acidic' OR 'acid is produced' IGNORE 'the solution is acidic' but ALLOW 'the solution formed is acidic' DO NOT ALLOW 'chlorine is acidic' ie acidity must be related to the product(s)
		(ii)	C/O ⁻ ✓	1	If an incorrect equation is seen: ALLOW second mark if H ⁺ OR HC <i>l</i> OR HC <i>l</i> O is given as a product in the equation AND is stated as being acidic If no equation is seen: ALLOW second mark if H ⁺ OR HC <i>l</i> OR HC <i>l</i> O is produced AND is stated as being acidic ALLOW OC <i>I</i>
			Total	11	

0	Question	Answer	Marks	Guidance
2	(a)	The (weighted) mean mass of an atom (of an element) OR The (weighted) average mass of an atom (of an element) ✓ compared with 1/12th (the mass) ✓ of (one atom of) carbon-12 ✓	3	ALLOW average atomic mass DO NOT ALLOW mean mass of an element ALLOW mean mass of isotopes OR average mass of isotopes DO NOT ALLOW the singular; 'isotope' For second and third marking points ALLOW compared with (the mass of) carbon-12 which is 12 ALLOW mass of one mole of atoms ✓ compared to 1/12th ✓ (mass of) one mole OR 12g of carbon-12 ✓ ALLOW
	(b)	FIRST CHECK THE ANSWER ON THE ANSWER LINE If answer = 32.09 award 2 marks $32 \times 95.02 + 33 \times 0.76 + 34 \times 4.22$ 100 OR 30.4064 + 0.2508 + 1.4348 OR = 32.092 (calculator value) \checkmark $(A_r =) 32.09 \checkmark$	2	ALLOW one mark for ECF from transcription error in first sum provided final answer is to 2 decimal places and is between 32 and 34 and is a correct calculation of the transcription

Q	Question				Ans	wer		Marks	Guidance
2	(c)		³³ S ³⁴ S ^{2–}	protons 16 16	neutrons 17 18	electrons 16 18	 ✓ ✓ 	2	Mark by row
	(d)		If answ (mol of OR (no. of OR (no. of 10^{24} \checkmark Correct 6.02 \times	ver = 5.78 : atoms) = 0 molecules) S atoms in	× 10²² awar 0.0120 × 8 = 0 = 0.0120 × 1 mole of S es (number o	d 2 marks 0.0960 (mo 6.02×10^{23} $_8) = 8 \times 6.02$	ANSWER LINE I) = 7.224×10^{21} $2 \times 10^{23} = 4.816 \times 10^{21}$ 0.0120 × 8 ×	2	If there is an alternative answer, check to see if there is any ECF credit possible using working below ALLOW 5.8 x 10 ²² up to calculator value of 5.7792 x 10 ²² ALLOW correct rounding of ECF to 2 significant figures or more up to calculator value ALLOW answers in non standard form such as 0.578 x 10 ²³ correctly rounded to 2 or more significant figures
	(e)	(i)	Unever <i>Type o</i> Creates dipole (<i>Inducti</i>	f dipole m s or causes in a molec ion of a se	on of electron ark s an instanta	ineous dipol e <i>mark</i>	e OR temporary nolecules ✓	3	 Use annotations with ticks, crosses, ECF etc for this part ALLOW movement of electrons ALLOW changing electron density ALLOW 'transient', 'oscillating' 'momentary' 'changing' DO NOT ALLOW induces a temporary dipole for the second marking point ALLOW induces a dipole in neighbouring molecules ALLOW causes a resultant dipole in other molecules ALLOW atoms for molecules

Q	uesti	ion	er	Marks	Guidance
2	(e)	(ii)	Only one type of atom OR No (permanent) dipoles OR non-polar OR no polar bonds ✓	1	ALLOW no difference in electronegativity IGNORE 'No hydrogen bonding' IGNORE 'No lone pairs'
	(f)		+ 2 ✓	1	ALLOW 2(+)
	(g)	(i)	There are no waters of crystallisation \checkmark	1	ALLOW 'without water' 'no water' etc IGNORE dehydrated
		(ii)	248.2 ✓	1	IGNORE units DO NOT ALLOW 248
		(iii)	FIRST CHECK THE ANSWER ON THE ANSWER LINE If answer = 7.91 (g) award 2 marks	2	If there is an alternative answer, check to see if there is any ECF credit possible using working below
			(amount of Na ₂ S ₂ O ₃ •5H ₂ O) = 12.41/248.2 OR = 0.05(00) (mol) ✓		ALLOW ECFs from answer to (g)(ii) for both marking points
			(mass of Na ₂ S ₂ O ₃) = 0.05 x 158.2 = 7.91 (g) ✓		ALLOW ECF for calculated mol of $Na_2S_2O_3\bullet 5H_2O \times 158.2$ correctly calculated for the 2nd mark
					ALLOW calculator value or rounding to 3 significant figures or more but IGNORE 'trailing' zeroes, eg 0.200 allowed as 0.2

C	Questi	ion	er	Marks	Guidance
2	(h)	(i)	Sulfur has six bonded pairs (and no lone pairs) \checkmark	2	ALLOW 'It has six bonded pairs' ALLOW bonds for bonded pairs IGNORE regions OR areas of negative charge
			Electron pairs repel (one another equally) 🗸		ALLOW 'bonds repel' DO NOT ALLOW 'Atoms repel' or 'electrons repel' 'Lone pairs repel more than bonded pairs' would score the second mark but would contradict the first mark if there is no reference to no lone pairs
		(ii)	 The ability of an atom to attract electrons ✓ in a (covalent) bond ✓ (The octahedral shape) is symmetrical ✓ 	3	ALLOW dipoles cancel out IGNORE polar bonds repel IGNORE charges cancel
			Total	23	

Quest	tion	er	Mark	Guidance
3 (a)		particlerel chargerel masspositionproton1nucleusneutronnil/1nucleuselectrons1/2000in shells	1	1 mark for whole table ALLOW '+' on its own for rel charge of proton DO NOT ALLOW '1' on its own for rel charge of proton DO NOT ALLOW 'positive' for rel charge of proton For neutron ALLOW 'neutral' ALLOW '' on its own for rel charge of electron DO NOT ALLOW 'negative' for rel charge of electron IGNORE '+' if precedes '1' for mass
(b)		The energy required to remove an electron \checkmark from each atom in one mole \checkmark of atoms in the gaseous state \checkmark	1	IGNORE 'middle/centre' for nucleus ALLOW 'energy to remove one mole of electrons from one mole of gaseous atoms' for three marks ALLOW 'The energy required to remove an electron from one mole of gaseous atoms to form one mole of gaseous 1+ ions' for two marks as it does not meet the 2 nd marking point For third mark: ALLOW ECF of wrong particle being gaseous If no attempt at a definition, ALLOW one mark for the equation below, including state symbols X(g) → X ⁺ (g) + e ⁻ OR X(g) - e ⁻ → X ⁺ (g) ALLOW e for electrons
(c)		a 2p orbital $2\checkmark$ the 3s sub-shell $2\checkmark$ the 4th shell $32\checkmark$	1 1 1	IGNORE state symbol for electron
(d)		A repeating pattern (of properties shown across different periods) ✓	1	ALLOW 'repeating trend' DO NOT ALLOW just 'trend' OR 'pattern'
(e)	(i)	C√	1	
	(ii)	Al✓	1	
	(iii)	N ✓	1	
	(iv)	Al ✓	1	
	(v)	Mg✓	1	
		Total	13	

	Quest	tion	er	Mark	Guidance
4	(a)		$MgCO_3 \rightarrow MgO + CO_2 \checkmark$	1	IGNORE state symbols
	(b)	(i)	MgCO ₃ (s) + 2HCl(aq) →MgCl ₂ (aq) + H ₂ O(l) + CO ₂ (g) Correct balanced equation \checkmark Correct states for correct species \checkmark	1 1	ALLOW states mark if MgCl used in place of MgCl ₂
		(ii)	Similarity: (Both) dissolve OR disappear. ✓ Difference:	1	ALLOW (both) 'go clear'
			One effervesces OR fizzes OR bubbles OR gas produced ✓	1	ALLOW CO ₂ produced DO NOT ALLOW incorrect gases DO NOT ALLOW responses which suggest A will effervesce e.g. as B will fizz more
		(iii)	203.3	1	DO NOT ALLOW 203 or 203.0 IGNORE units
		(iv)	$\begin{bmatrix} Mg \end{bmatrix}^{2+} \begin{bmatrix} \bullet & \bullet \\ \bullet & CI \end{bmatrix}^{-} \begin{bmatrix} \bullet & \bullet \\ \bullet & \bullet \end{bmatrix}^{-}$		 For 1st mark, if 8 electrons shown around cation then 'extra' electron around anion must match symbol chosen for electrons in cation Shell circles not required IGNORE inner shell electrons ALLOW correct diagram of a [Cl⁻] ion with '2 x' OR '2' in front OR 'x 2' after the diagram. ALLOW correct diagram of [Cl⁻] ion with subscript 2. i.e. [Cl⁻]₂. DO NOT ALLOW [Cl⁻₂] [Cl⁻₂
			magnesium (ion) with 8 (or no) outermost electrons AND 2 x chloride (ions) with ' <i>dot-and-</i> <i>cross</i> ' outermost octet ✓ correct charges ✓	1	i.e. for first mark charges do not need to be seen

	Quest	tion	er	Mark	Guidance
4	(c)		1.82 1.05 2.40 24.3 28.1 16.0 To give 0.0749 0.0374 0.150 Ratio of moles ✓	1	 ALLOW '24' for Mg (giving 0.0758) and '28' for Si (giving 0.0375) ALLOW any correct ratios of moles as calculator value OR correct rounding to 2 sig figs or more ALLOW method from masses being converted to percentages
			Answer = Mg₂SiO₄ ✓	1	ALLOW correct answer from a ratio of moles where it is clear that the candidate has divided by the atomic numbers. ALLOW ECF for formula from incorrect ratio of moles due to over-rounding calculator error or upside down mole calculation
	(d)	(i)	$\frac{32.00}{1000} \times 0.500 = 1.60 \times 10^{-2} \text{ (mol)}$ OR 0.0160 (mol)	1	ALLOW 0.016 (mol) IGNORE trailing zeroes
		(ii)	$\frac{1.60 \times 10^{-2}}{2} = 8.00 \times 10^{-3} \text{ (mol)}$ OR 0.00800 (mol)	1	ALLOW ECF for answer $\frac{d(i)}{2}$ ALLOW 0.008 or 8 × 10 ⁻³ (mol) Ignore trailing zeroes ALLOW 0.0080 or 8.0 × 10 ⁻³
		(iii)	Molar mass Mg(OH) ₂ = 58.3 \checkmark	1	DO NOT ALLOW 58 OR 58.0
			mass Mg(OH) ₂ = 58.3 × 8.00 × 10^{-3} = 0.466(4) g \checkmark	1	ALLOW answer to d(ii) × 58.3 ALLOW 0.47 ALLOW ECF for d(ii) × incorrect molar mass as calculator value OR correct rounding to 2 sig figs or more
			% Mg(OH) ₂ = $\frac{0.4664}{0.500}$ × 100 = 93.3% \checkmark	1	ALLOW 93% OR 93.2% OR 93.28% DO NOT ALLOW d(ii)/ 0.5×100 ALLOW (answer to second marking point/ 0.500) × 100 as calculator value OR correct rounding to 2 sig figs or more ALLOW moles method for 3 marks Molar mass = 58.3 0.500/58.3 = 0.00857(6) $0.00800/0857(6) \times 100 = 93.3\%$
					ALLOW correct answer without working for 3 marks
			Total	15	

PhysicsAndMathsTutor.com

Qu	Question		Expected Answers	Marks	Additional Guidance		
5	а	i	¹¹⁸ Sn 50p 68n 50e Complete row ✓	1			
		ii	¹²⁰ ₅₀ Sn has (two) more neutrons / 70 neutrons ✓ ora	1	ALLOW There is a different number of neutrons IGNORE correct reference to protons / electrons DO NOT ALLOW incorrect references to protons / electrons ALLOW ECF for stated number of neutrons from 1a(i)		
	b	i	The (weighted) mean mass of an atom (of an element) OR The (weighted) average mass of an atom (of an element) ✓	3	ALLOW average atomic mass DO NOT ALLOW mean mass of an element ALLOW mean mass of isotopes OR average mass of isotopes DO NOT ALLOW the singular; 'isotope'		
			compared with 1/12th (the mass) \checkmark		For second and third marking points ALLOW compared with (the mass of) carbon-12 which is 12		
			of (one atom of) carbon-12 ✓		ALLOW mass of one mole of atoms ✓ compared to 1/12th ✓ (mass of) one mole OR 12g of carbon-12 ✓ ALLOW mass of one mole of atoms 1/12th mass of one mole OR 12g of carbon-12		
	C		moles of Sn = $\frac{2080}{118.7}$ = 17.52 \checkmark 17.52 × 6.02 × 10 ²³ = 1.05 × 10 ²⁵ atoms \checkmark	2	ALLOW 17.5 up to (correctly rounded) calculator value of 17.52316765 DO NOT ALLOW use of 118, which makes moles of Sn = 17.63 ALLOW 105 × 10 ²³ atoms DO NOT ALLOW answers which are not to three sig figs for second marking point ALLOW two marks for answer only of 1.05×10^{25} ALLOW one mark for answer only if not 3 sig figs up to calculator value of $1.054894693 \times 10^{25}$ Eg 100 × 1 ALLOW ECF for any calculated moles of Sn (based on use of any A_r value) × 6.02×10^{23} if shown to 3 sig figs DO NOT ALLOW mass of Sn × 6.02×10^{23}		

Qu	iesti	ion	Exp	ected Answers	Marks	Additional Guidance
5	d		$ \frac{78.8}{118.7} $ and 0R $ = 0.66(4) $ and $ \frac{0.66(4)}{0.66(4)} $ = 1	$\frac{2}{16.0}$ = 1.3) \checkmark $\frac{1.325}{0.66(4)} = 2$	2	 ALLOW SnO₂ for one mark if no working shown ALLOW use of 118 for this part IGNORE incorrect rounding provided given to two sig figs IGNORE incorrect symbols e.g. T or Ti for Tin, as long as correct A_r of tin (118.7 or 118) used
			ans = SnO₂ ✓			ALLOW Sn ₂ O for 1 mark ECF if both inverted mole calculations are shown ALLOW Sn ₃ O ₅ with evidence of use of both atomic numbers for one mark ALLOW 2 marks if candidate has adopted the following approach 78.8% of mass = 118.7 100% of mass = 118.7/0.788 = 150.6 (151) 150.6 - 118.7 = 31.9 (32) Both masses would get one mark 31.9/16 = 2
				Total	9	